Math 279 Lecture 29 Notes

Daniel Raban

December 9, 2021

1 The Final Ingredients in Our Regularity Structure

1.1 Constructing the group of transformations from a Hopf algebra

Consider a Hopf algebra $\left(H ; \cdot, \mathbf{1} ; \Delta, \mathbf{1}^{\prime} ; S\right)$ with dual $\left(H^{*} ; \Delta^{*},\left(\mathbf{1}^{\prime}\right)^{*} ; .^{*}, \mathbf{1}^{*} ; S^{*}\right)$. Recall that we also have an algebra $\left(\mathcal{L}(H), \star, \mathbf{1} \circ \mathbf{1}^{\prime}\right)$, and recall that $S=\left(\operatorname{id}_{H}\right)^{-1}$ where the inverse is with respect to \star. Finally, we defined a map $\Gamma: H^{*} \rightarrow \mathcal{L}(H)$. (The example we should keep in mind is $H=T$ for the KPZ equation or for another PDE and G is a group of $\Gamma: H \rightarrow H$.) We defined $\Lambda: H^{*} \rightarrow \mathcal{L}\left(H^{*}\right)$ given by $\Lambda_{g}(f)=f \cdot \Delta^{*} g$, which allowed us to define $\Gamma_{g}=\Lambda_{g}^{*}$.

Observe that $\Lambda_{g_{1} \cdot \Delta * g_{2}}=\Lambda_{g_{2}} \circ \Lambda_{g_{1}}$. From this, we can readily deduce that $\Gamma_{g_{1} \cdot \Delta * g_{2}}=$ $\Gamma_{g_{1}} \circ \Gamma_{g_{2}}$. In other words, we have $\Gamma:\left(H^{*}, \cdot \Delta^{*}\right) \rightarrow(\mathcal{L}(H), \circ)$ as a homomorphism with respect to these algebra structures. For our purposes, we need a group. Namely, define the group of characters

$$
G_{0}=\left\{g \in H^{*}: g: H \rightarrow \mathbb{R} \text { linear, } g\left(h_{1} \cdot h_{2}\right)=g\left(h_{1}\right) g\left(h_{2}\right), g(\mathbf{1})=1\right\} .
$$

We can see ${ }^{1}$ that if $g_{1}, g_{2} \in G_{0}$, then $g_{1} \cdot \Delta^{*} g_{2} \in G_{0}$. It turns out that if $g \in G_{0}$ and $\widehat{g}=g \circ S \in G_{0}$ then $\widehat{g} \cdot \Delta^{*} g=g \cdot \Delta^{*} \widehat{g}=\left(\mathbf{1}^{\prime}\right)^{*}$.

Recall that a graded bialgebra has $\mathcal{H}=\bigoplus_{n} \mathcal{H}_{n}$ with : : $\mathcal{H}_{m} \otimes \mathcal{H}_{m} \rightarrow \mathcal{H}_{n+m}$ and $\Delta: \mathcal{H}_{n} \rightarrow \bigoplus_{i+j=n} \mathcal{H}_{i} \otimes \mathcal{H}_{j}$, and recall that a connected bialgebra has $\mathcal{H}_{0}=\{\lambda \mathbf{1}: \lambda \in k\}$.
Theorem 1.1. Any connected, graded bialgebra has a unique antipode S.
Proof. Here is the idea: Let $u_{0}=\mathbf{1} \circ \mathbf{1}^{\prime}$ denote the unit for $(\mathcal{L}(H), \star)$. We want to say something like

$$
\begin{aligned}
(\mathrm{id})^{-1} & =\left(u_{0}-\left(u_{0}-\mathrm{id}\right)\right)^{-1} \\
& =\sum_{k \geq 0}\left(u_{0}-\mathrm{id}\right)^{\star k} .
\end{aligned}
$$

[^0]This is algebra; we can't have an infinite sum! All we need to verify is that the if $h \in \mathcal{H}_{n}$, then $\left(\sum_{k \geq 0}\left(u_{0}-\mathrm{id}\right)^{\star k}\right)(h)=\sum_{k=0}^{n}\left(u_{0}-\mathrm{id}\right)^{\star k}$ for some n. This is where the graded condition comes in.

Example 1.1. Let $H=T\left(\mathbb{R}^{\ell}\right)=\bigoplus_{n \geq 0} H_{n}$, with $H_{n}=\operatorname{span}\left\{e_{i_{1}, \cdots, i_{n}}: i_{1}, \ldots, i_{n} \in\right.$ $\{1, \ldots, \ell\}\}$. The product on H is the shuffle product, $e_{I} \sqcup \sqcup e_{J}$. The coproduct is $\Delta\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{i}\left(v_{0} \otimes \cdots \otimes v_{i}\right) \otimes\left(v_{i+1} \otimes \cdots \otimes v_{n}\right)$ with $v_{0}=1$. We are interested in $\mathrm{x}:[0, T]^{2} \rightarrow H^{*}$ with

$$
\left\langle\mathbf{x}, e_{i_{1}, \ldots, i_{n}}\right\rangle=\int_{0}^{T} \cdots \int_{0}^{T} d x^{i_{1}} \cdots d x^{i_{n}}
$$

As we discussed before, we require two properties:

1. x is a character:

$$
\mathbf{x}(a \amalg b)=\langle\mathbf{x}, a \amalg b\rangle=\mathbf{x}(a) \mathbf{x}(b)=\langle\mathbf{x}, a\rangle\langle\mathbf{x}, b\rangle .
$$

2. Chen's relation:

$$
\mathbf{x}(s, u) \cdot \Delta^{*} \mathbf{x}(u, t)=\mathbf{x}(s, t), \quad \text { so } \quad \mathbf{x}(s, t)=(\mathbf{x}(s))^{-1} \cdot \Delta^{*} \mathbf{x}(t)
$$

Now we want to use the same idea for the KPZ equation, but it doesn't work exactly the same way. We need a small variation of what we have done so far so we can deal with functions and distributions separately. Namely, we have two spaces ($T, \cdot \cdot$) (algebra) and $\left(T^{*}, \cdot, \widetilde{\Delta}^{+}\right)$, where $\widetilde{\Delta}^{+}$is a suitable coproduct. Moreover, we need $\Delta^{+}: T \rightarrow T \otimes T^{+}$.

Recall that $\Gamma_{g}=(\mathrm{id} \otimes g) \circ \Delta$. Now given $g \in\left(T^{+}\right)^{*}$, we define $\Gamma_{g}(h)=(\mathrm{id} \otimes g) \circ \Delta^{+}(h)$ (so $\Gamma_{g}: T \rightarrow T$). Again, we may define

$$
G^{+}=\left\{g \in\left(T^{+}\right)^{*}: g\left(h_{1} \cdot h_{2}\right)=g\left(h_{1}\right) g\left(h_{2}\right), g(\mathbf{1})=1\right\}
$$

which is a group. As before, we have

$$
\Gamma_{g_{1} \cdot{ }_{\Delta}+g_{2}}=\Gamma_{g_{1}} \circ \Gamma_{g_{2}} .
$$

Given the pair $\left(T, T^{+}\right)$with Δ^{+}, we are ready to build our regularity structure (not just for KPZ but for all the examples that have been worked out in this context). We use the following scheme:

First, build a linear $\boldsymbol{\Pi}: T \rightarrow \mathcal{D}^{\prime}$, and imagine we have a map $F: \mathbb{R}^{d} \rightarrow G=\left\{\Gamma_{g}:\right.$ $\left.G \in G^{+}\right\}$, so $F(x)=\Gamma_{f(x)}$. Then we set $\Pi_{x}=\Pi \circ F_{x}^{-1}$. Then the requirement that $\Pi_{x} \Gamma_{x, y}=\Pi_{y}$ or $\Pi F_{x}^{-1} \Gamma_{x, y}=\Pi F_{y}^{-1}$ leads to $\Gamma_{x, y}=F_{y}^{-1} \circ F_{x}$. In fact, our T is the algebra generated by $\mathbf{1}, X_{1}, X_{2}, \partial_{\ell} \mathscr{I}(\tau), \mathscr{I}(\tau), \ldots . T^{+}$is the algebra freely generated by 1, $X_{1}, X_{2},\left(\left(\partial_{\ell} \mathscr{I}\right)(\tau): 2-\operatorname{deg} \tau-|\ell|>0\right)$. Set

$$
\Delta^{+}(\mathbf{1})=\mathbf{1} \otimes \mathbf{1}, \quad \Delta^{+}\left(X_{i}\right)=\mathbf{1} \otimes X_{i}+X_{i} \otimes \mathbf{1}, \quad \Delta^{+}(\Xi)=\Xi \otimes \mathbf{1}
$$

$$
\begin{gathered}
\Delta^{+}(\underbrace{\tau \cdot \tau^{\prime}}_{\text {product in } T})=\underbrace{\Delta^{+}(\tau) \cdot \Delta^{+}\left(\tau^{\prime}\right)}_{\text {product in } T^{+}}, \\
\Delta^{+} \mathscr{I}(\tau)=(\mathscr{I} \otimes \mathrm{id}) \Delta^{+} \tau+\sum_{\ell:|\ell|<\operatorname{deg} \tau+2} \frac{X^{\ell}}{\ell!} \otimes \partial_{\ell} \mathscr{I}(\tau) .
\end{gathered}
$$

1.2 Renormalization and the Wick product

We carry our all these operations to build a suitable operator $H: \mathbb{R}_{x} \times[0, T) \rightarrow R$ which depends on the model we have for ξ. Now replace ξ with the smoothized version $\mid x i * \chi^{\varepsilon}$ and denote the correspoding solution by H^{ε}. However, H^{ε} does not converge as $\varepsilon \rightarrow 0$. For example, replace Ξ by ξ^{ε} and consider $\partial \mathscr{I}\left(\xi^{\varepsilon}\right)$; this does not converge as $\varepsilon \rightarrow 0$. The issue is $\left(K_{x} * \xi^{\varepsilon}\right)^{2} \rightarrow \infty$, where K is the heat kernel.

However, a miracle happens. If we look at $\left(K_{x}-\xi^{\varepsilon}\right)^{2}-\mathbb{E}\left[\left(K_{x} * \xi^{\varepsilon}\right)^{2}\right]$, this has a limit as $\varepsilon \rightarrow 0$. We have

$$
\int f\left(z_{1}, z_{2}\right) \xi\left(z_{1}\right) \xi\left(z_{2}\right) d z_{1} d z_{2}
$$

which causes a problem, and we replace it by

$$
\int f\left(z_{1}, z_{2}\right) \xi\left(z_{1}\right) \diamond \xi\left(z_{2}\right) d z_{1} d z_{2}
$$

where \diamond is the Wick product:

$$
\xi\left(z_{1}\right) \diamond \xi\left(z_{2}\right)=\xi\left(z_{1}\right) \xi\left(z_{2}\right)-\delta_{0}\left(z_{1}-z_{2}\right) .
$$

It turns out that all that we need to do is subtract a constant. These constants lie in a 4 or 6 dimensional group, but in the original problem, we only see 1 dimension of this.

[^0]: ${ }^{1}$ Professor Rezakhanlou uses the phrase "It is not hard to see." He has gotten comments from referees on his papers saying that he should prove more things. I like to avoid that phrase because sometimes it is hard to see.

